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Chapter 3
Molecular Mechanisms Underlying 
Synaptic Tagging and Consolidation

Yasunori Hayashi, Miquel Bosch, Pin-Wu Liu, Tomohisa Hosokawa, 
and Takeo Saneyoshi

Abstract After a synapse undergoes long-term potentiation (LTP), it acquires a 
newly remodeled molecular and structural organization. This reorganization over 
time is explained by a hypothetical structure called a synaptic tag, which is specifi-
cally formed at potentiated synapses, not at unstimulated ones, and captures newly 
synthesized proteins to persistently stabilize the potentiated state. However, to date, 
the molecular identity of the synaptic tag remains unclear. Based on several lines of 
experimental evidence, we propose that remodeled filamentous (F-) actin and 
CaMKII together form the synaptic tag by modifying the postsynaptic cytoskeletal 
structure to capture newly synthesized synaptic proteins. Liquid–liquid phase sepa-
ration, a biophysical property of biological macromolecules, also plays a key role in 
this process. F-actin and CaMKII both fulfill the criteria to be the tag: they are spe-
cifically enriched at potentiated synapses without requiring new protein synthesis 
and persist for at least 1 h. Additionally, the intrinsic binding capacity of F-actin and 
CaMKII is ideal for capturing newly synthesized proteins at the synapse, thereby 
consolidating the synaptic structure and function and eventually allowing memory 
persistence.
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3.1  Introduction: Memory, LTP, and the Tag

One of the most fundamental questions in neuroscience is to understand how mem-
ories are stored in the brain. At the cellular level, synaptic plasticity represents the 
best molecular explanation for the process of learning and memory. When a synapse 
receives a transient but strong stimulation, subsequent transmission on that synapse 
is enhanced for a long time, a phenomenon called long-term potentiation (LTP) 
(Malenka and Bear 2004; Nicoll 2017; Hayashi 2022). Drugs or genetic modifica-
tions that interfere with LTP often impair learning and memory in intact animals 
(Malenka and Bear 2004). In addition, learning is known to induce LTP-like poten-
tiation of synaptic transmission; on the other hand, the artificial generation of LTP 
can induce memory (Whitlock et al. 2006; Nabavi et al. 2014).

After the initial induction of LTP, the synapse goes through several distinct 
phases of potentiation, each sensitive to different inhibitors and thus involving dif-
ferent molecular mechanisms. The first phase is post-tetanic potentiation (PTP; 
approximately <1 min) (Zucker and Regehr 2002), which is the result of presynap-
tic accumulation of intracellular Ca2+ and leads to increased transmitter release but 
does not require postsynaptic NMDA-type glutamate receptors (NMDAR) 
(Collingridge et al. 1983; Malinow et al. 1988). The next phase is short-term poten-
tiation (STP; approximately <15 min), which requires postsynaptic NMDARs but is 
not blocked by either an inhibitor or genetic manipulation of Ca2+-calmodulin- 
dependent protein kinase II (CaMKII), a serine/threonine kinase strongly impli-
cated in LTP and memory (Collingridge et al. 1983; Malinow et al. 1988). This is 
followed by LTP, which requires both NMDARs and CaMKII (Malinow et al. 1988; 
Malenka et al. 1989; Tsien et al. 1990; Silva et al. 1992). LTP can be further subdi-
vided into the early (approximately <2 h) and late (>2 h) phases (Frey et al. 1988; 
Nayak et al. 1998; Kelleher 3rd et al. 2004; Pang et al. 2004), the major difference 
being the requirement for protein synthesis. While the early phase of LTP (E-LTP) 
does not require the synthesis of new proteins, the late phase (L-LTP) does. In 
agreement with this, both transcriptional and translational inhibitors can inhibit 
L-LTP, but not E-LTP. Experimentally, a weak tetanic stimulation induces E-LTP, 
with the potentiated transmission typically returning to baseline within about 2 h or 
so. However, by giving a stronger tetanic stimulus, L-LTP lasting more than 2 h can 
be induced (Frey et al. 1988; Kelleher 3rd et al. 2004). As a result, the synaptic 
changes are consolidated and become less sensitive to depotentiating stimulation 
(Fujii et al. 1991). Importantly, induction and consolidation of LTP take place selec-
tively at stimulated synapses, not at naïve unstimulated ones, which means that the 
structural/functional modifications underlying LTP must be synapse-specific.

As the consolidation of E-LTP into L-LTP requires the synthesis of new proteins, 
this poses an interesting challenge to the neuron. Once new proteins are synthesized 
in the soma or dendrite, they must find the appropriate synapses that received LTP- 
inducing stimulation among all the nonstimulated ones. Indeed, the existence of 
such a mechanism was reported in an elegant study by Morris et al. (Frey and Morris 
1997; Redondo and Morris 2011). They first induced E-LTP with a weak tetanus via 
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a specific synaptic input, which alone would not induce L-LTP. However, when they 
induced L-LTP by a strong tetanus via a second input pathway using a separate 
electrode, the first input pathway, which only received E-LTP induction, also under-
went L-LTP.  They hypothesized that a structure called a synaptic tag is formed 
specifically at the potentiated synapses but not at the unstimulated ones. This tag 
captures newly synthesized proteins from the soma or dendrite at the potentiated but 
not at the nonpotentiated synapses. This synaptic tagging and capture (STC) hypoth-
esis was proposed in the late 1990s, and many following studies confirmed it, at the 
molecular, cellular, and even behavioral level (Sajikumar and Frey 2004a, b; 
Sajikumar et al. 2005; Redondo and Morris 2011; Moncada et al. 2015). However, 
the molecular identity of the synaptic tag and how it leads to the synaptic consolida-
tion still remain to be fully elucidated.

3.2  Synaptic Tag and Trafficking of Synaptic Proteins

There are four criteria that the synaptic tag must satisfy (Fig. 3.1) (Martin and Kosik 
2002; Okamoto et al. 2004; Okamoto et al. 2009; Viola et al. 2014). First, it must be 
formed specifically at potentiated synapses, but not at naïve synapses. Second, it 
must form without requiring newly synthesized proteins. Third, it must persist for at 
least 1–2  h, allowing for new proteins to be synthesized and trafficked to the 

Fig. 3.1 Criteria required for a synaptic tag. (Based on Martin and Kosik 2002; Okamoto et al. 
2004; Okamoto et al. 2009; Viola et al. 2014)
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potentiated synapses. Finally, it should serve as a binding site to capture newly syn-
thesized proteins.

AMPA-type glutamate receptor molecules (AMPARs) are the main ionotropic 
glutamate receptor mediating synaptic transmission. The trafficking and trapping of 
AMPARs at the synaptic site have been considered as the mechanism of LTP expres-
sion (Shi et  al. 1999; Hayashi et  al. 2000; Malinow et  al. 2000). AMPARs are 
anchored at the synapse through the postsynaptic density (PSD), a multimolecular 
complex of scaffolding proteins, cytoskeletal proteins, and signal transduction mol-
ecules (Sheng and Hoogenraad 2007). It follows then that to understand LTP con-
solidation, it’s imperative to know the exact time course of the AMPAR synaptic 
translocation, the PSD complex remodeling, and the formation of structures that 
could serve as synaptic tags. To address this question, Bosch et al. tested the trans-
location of a number of synaptic proteins, each labeled with GFP, upon the induc-
tion of LTP in single dendritic spines by photouncaging of caged-glutamate (Bosch 
et al. 2014) (Fig. 3.2). Glutamate photouncaging induces a rapid expansion of the 
targeted spine, termed structural LTP (sLTP) (Matsuzaki et al. 2004). At the same 
time, proteins are translocated to the spine together with AMPARs, but in a distinct 
order and extent. The first proteins to be concentrated at the spine within a few min-
utes after the induction of LTP are actin and some of its regulator proteins, including 
cofilin and the Arp2/3 complex. They are followed by other actin-binding proteins 
such as profilin, α-actinin 2, drebrin A, and CaMKII (both α and β isoforms), which 
may stabilize the F-actin. In contrast, PSD scaffold proteins such as PSD-95, Shank, 
SAP97, and Homer1B do not enter the spine until approximately 60 min later, as 
they require additional proteins to be newly synthesized (Bosch et al. 2014).

Fig. 3.2 Translocation of AMPAR subunit GluA1, actin, CaMKII α/β, and Homer1B. Each of the 
test proteins was tagged with GFP (for GluA1, a pH-sensitive superecliptic pHluorin was used to 
highlight the surface protein) and co-expressed with the red fluorescent protein DsRed2 as a vol-
ume filler, in hippocampal CA1 pyramidal neurons. The neuron was observed with a two-photon 
microscope and sLTP was induced in a single spine by photo-uncaging of caged glutamate. While 
actin is rapidly translocated to the synapse, Homer1B remains constant. (From Bosch et al. 2014)

Y. Hayashi et al.



67

3.3  Remodeled F-actin as a Candidate for Synaptic Tag

These results suggest that actin is rapidly regulated within the dendritic spine after 
LTP induction, which is consistent with the result by Okamoto et al. who used a 
Förster resonance energy transfer (FRET) approach to visualize the local equilib-
rium of actin polymerization/depolymerization (Okamoto et al. 2004) (Fig. 3.3). 
This was achieved by co-expressing donor CFP- and acceptor YFP-labeled actin 
molecules. When the donor and acceptor actin polymerized to form F-actin, it 
showed FRET.  Indeed, the induction of LTP by a locally implanted electrode 
induced a sustained (>30 min) increase in FRET, which likely explains the dendritic 
spine enlargement associated with LTP.

F-actin provides the binding site for a number of postsynaptic proteins (Pollard 
2016), including CaMKIIβ subtype, α-actinin, drebrin, myosins, neurabins, cortac-
tin, and synaptopodin, as well as other regulatory proteins, which, in turn, can asso-
ciate with various other structural or signaling proteins. To test whether the increased 
F-actin itself is sufficient for synaptic translocation of actin-binding proteins, 
F-actin was pharmacologically stabilized using phalloidin, and the translocation of 
CaMKIIβ, which bears an F-actin binding domain, was tested (Okamoto et  al. 
2004). As a control, CaMKIIα, which has a similar overall structure and molecular 
weight but lacks the F-actin binding domain, was also tested. As a result, CaMKIIβ 
was translocated to the synapse by the pharmacological induction of F-actin, but not 

Fig. 3.3 Formation of F-actin is sufficient to induce translocation of an actin-binding protein, 
CaMKIIβ. (a) FRET-based sensor of F-actin formation indicates that LTP induction induces per-
sistent formation of F-actin. (b) Pharmacological formation of F-actin by injection of phalloidin 
was sufficient to synaptically translocate an actin-binding protein, CaMKIIβ, to the synapse. (From 
Okamoto et al. 2004)
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CaMKIIα. CaMKIIα was also translocated when it was co-expressed with CaMKIIβ 
forming a hetero-oligomer. These results suggest that the increase in F-actin content 
itself is sufficient for the translocation of CaMKII and most likely other F-actin 
binding proteins as well.

These properties of newly formed F-actin indeed fulfill the criteria of the synap-
tic tag (Fig. 3.1) (Okamoto et al. 2004, 2009; Fonseca 2012; Pinho et al. 2020). 
F-actin is increased only in stimulated spines, but not in other spines. Actin polym-
erization does not require new protein synthesis. The increased FRET persists for 
more than 30 min without any sign of decay. Finally, new actin filaments can serve 
as a binding site for many F-actin binding proteins, which further associate with 
other postsynaptic proteins. This idea has been tested pharmacologically, with the 
disruption of F-actin by latrunculin A or cytochalasin D preventing the formation of 
a synaptic tag in the two-pathway experiments (Ramachandran and Frey 2009; 
Fonseca 2012).

F-actin can form macrostructures of a higher order, such as bundles and meshes, 
when actin filaments are cross-linked by specific actin-binding proteins, such as 
fimbrin, α-actinin, filamin, and also CaMKII (Hotulainen and Hoogenraad 2010; 
Chazeau et al. 2014; Chazeau and Giannone 2016). Although these structures are 
already present in naïve spines, the induction of LTP creates new F-actin macro-
structures specifically at the potentiated spine with novel properties of higher stabil-
ity, spine confinement, and different binding capacities (Honkura et al. 2008). One 
of these macrostructures is the one created by cofilin and F-actin. Although cofilin 
is an actin depolymerization factor, when present at a high stoichiometric ratio, it is 
able to stably bind to F-actin and, instead, stabilize the actin filament. Bosch et al. 
observed the selective formation of such cofilactin filaments at the base of spines 
that underwent LTP (Andrianantoandro and Pollard 2006; Bosch et al. 2014; Goto 
et al. 2021). This new structure is not only necessary for the consolidation of sLTP 
(Bosch et al. 2014) but also for the consolidation of context-specific memory and 
the sleep-dependent transfer of memory to the cortex (Goto et al. 2021). It can play 
a crucial role, especially in the early phase of LTP as part of the remodeled actin 
cytoskeleton that serves as a synaptic tag.

3.4  Liquid–Liquid Phase Separation and CaMKII 
as Candidate of Synaptic Tag

Another likely and not mutually exclusive candidate of the synaptic tag is CaMKII. It 
is a highly abundant protein kinase, accounting for 5–20% of all PSD proteins (Kim 
et al. 2016; Bayer and Schulman 2019; Yasuda et al. 2022). CaMKII has a rotational 
and planar symmetric structure composed of a hexamer or heptamer of dimers (total 
12- or 14-mers) with a central hub domain surrounded by kinase domains. 
Pharmacological and genetic blockade of this protein significantly impairs LTP as 
well as learning and memory (Malinow et al. 1988; Malenka et al. 1989; Tsien et al. 
1990; Silva et al. 1992). However, it is still not clear why CaMKII exists in such 
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abundance and why it has such a peculiar structure not seen in other kinases. 
Furthermore, the amount of CaMKII increases at the dendritic spine after LTP 
induction and maintains its accumulation over time (Bosch et al. 2014).

Liquid–liquid phase separation (LLPS) is an emerging concept in biology seen 
in proteins with multivalent weak affinity interactions or those with intrinsically 
disordered regions, through which the proteins can spontaneously associate with 
each other and form a liquid-like condensed phase, sometimes referred to as a 
membrane- less organelle, while excluding other proteins in the noncondensed 
diluted phase (Hyman et al. 2014; Shin and Brangwynne 2017; Hayashi et al. 2021). 
The condensate still retains the property of a liquid because it is structurally flexible 
and the molecules within the condensate are dynamically moving around and 
exchanged with those in the diluted phase, thereby providing a degree of metastabil-
ity. The condensate can trap molecules with affinity to the constituent molecules 
that would not normally have the capacity to undergo LLPS by themselves (“client” 
proteins). The condensates are not always a homogenous mixture of proteins and 
can form complex heterogeneous structures such as phase-in-phase architectures, 
with different functional types of condensate to perform, for example, sequential 
reactions. From these properties, LLPS is proposed to play an essential role in form-
ing cellular nanodomains of signal transduction and structure by selectively bring-
ing them together.

CaMKII can form stable complexes with substrate proteins such as the carboxyl 
tail of the NMDAR subtype GluN2B (Bayer et al. 2001). This led to Hosokawa 
et al. to test if CaMKII undergoes LLPS through its ability to cross-link multiple 
substrates and pseudosubstrate proteins with its oligomeric structure (Fig.  3.4). 

Fig. 3.4 Liquid- liquid phase separation of CaMKII with its substrate GluN2B carboxyl tail. 
CaMKII and GluN2B carboxyl tail, expressed in and purified from bacteria, fluorescently tagged, 
were mixed and observed under fluorescent microscopy. (From Hosokawa et al. 2021)
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They demonstrated that CaMKII can indeed undergo LLPS with its substrate pro-
tein GluN2B (Hosokawa et al. 2021). Interestingly, this is triggered by Ca2+/calmod-
ulin and, once formed, persists even after Ca2+ is chelated by EGTA. Further analysis 
indicates that this is mediated by T286 autophosphorylation, occurs within the auto-
inhibitory domain, and abolishes the autoinhibition, thereby opening the substrate 
binding site and allowing persistent binding with substrate proteins. These results 
indicate that CaMKII is indeed a postsynaptic crosslinker and can retain substrate 
proteins via an LLPS mechanism. At the same time, the interaction with the car-
boxyl tail of GluN2B places CaMKII condensates directly beneath the source of 
Ca2+ influx (Bayer et al. 2001).

This CaMKII condensate can also serve as a synaptic tag because it also meets 
the four criteria (Fig. 3.1): (1) it is specifically formed in synapses that have under-
gone LTP, (2) without requiring the synthesis of new proteins (CaMKII exists not 
only in PSD but also in the dendritic cytosol as a freely diffusing fraction, which 
acts as a reserve pool), (3) lasting >1 h after LTP induction, and (4) serving also as 
a binding site for many substrate proteins. In a single PSD, there are ~470 dodecam-
ers of CaMKII, which corresponds to ~5600 monomers, whereas only ~20 mole-
cules of GluN2B exist (Sheng and Hoogenraad 2007). Therefore, only a small 
fraction of CaMKII is occupied by GluN2B, leaving the rest available to interact 
with other proteins. Besides GluN2B, CaMKII interacts with other substrate pro-
teins such as densin-180, as well as substrate proteins such as Tiam1 (Saneyoshi 
et al. 2019; Özden et al. 2022; Yasuda et al. 2022). At the same time, there are a 
myriad of proteins that are phosphorylated by CaMKII (Hudmon and Schulman 
2002; Lisman et al. 2002). For example, Stargazin has a CaMKII phosphorylation 
site at the intracellular carboxyl tail, which inhibits its association to phospholipids 
in the plasma membrane (Opazo et  al. 2010; Sumioka et  al. 2010). In addition, 
Tiam1 and CaMKII form a reciprocal activating kinase effector complex (RAKEC), 
in which Tiam1 binding maintains CaMKII activity while phosphorylating Tiam1 
(Saneyoshi et al. 2019). This interaction is necessary for efficient sLTP (Kojima 
et al. 2019).

Is CaMKII condensate working independently from F-actin or do they depend on 
each other? Indeed, the β subtype of CaMKII has an F-actin binding module within 
the linker sequence between the kinase and association domains, through which 
CaMKIIβ accumulates with F-actin in neurons (Shen et al. 1998; Okamoto et al. 
2007). In contrast, CaMKIIα, which lacks the linker sequence, does not interact 
with F-actin. Since a single CaMKII oligomer can carry more than one CaMKIIβ, it 
can interact with F-actin from multiple interfaces. This makes CaMKII an F-actin 
bundling protein, rather than merely a binding protein (Okamoto et  al. 2007). 
Consistent with this, the overexpression of CaMKIIβ stabilizes F-actin turnover 
within the dendritic spine by preventing the access of actin-regulating proteins 
(Okamoto et al. 2007; Kim et al. 2019). Therefore, CaMKII condensate and F-actin 
are likely to interact with each other at the synapse, together forming a higher order 
F-actin structure potentially serving as a synaptic tag.
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3.5  Role of the Captured Proteins in Synaptic Consolidation

What is the role of the postsynaptic proteins captured by the synaptic tag mecha-
nism? A hint comes from the longitudinal observation of spine protein composition 
after sLTP induction (Bosch et  al. 2014). The major PSD scaffolding proteins, 
including Homer1B and Shank, are not translocated to the synapse within the first 
~30 min. Their total amount at the spine remains the same as before LTP induction. 
However, their amount starts increasing after around 1 h (Fig. 3.5). Intriguingly, this 

Fig. 3.5 Delayed translocation of PSD scaffolding proteins after LTP induction depending on 
protein synthesis. (a, b). Time-lapse images of the dendritic spine expressing GFP-Homer1B (A) 
and summary data (b). Synaptic translocation of GFP-tagged Homer1B was monitored over 
150 min after sLTP induction. Translocation did not take place until around 60 min (c–e). This was 
blocked by both transcriptional (C. cycloheximide) and translational (D. anisomycin) inhibitors 
and enhanced by BDNF (e), consistent with the property of L-LTP. (From Bosch et al. 2014)
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increase can be blocked by the translational inhibitors cycloheximide and anisomy-
cin, which also significantly reduces the extent of sLTP. In contrast, brain-derived 
neurotrophic factor (BDNF), which is known to promote L-LTP (Pang et al. 2004; 
Panja and Bramham 2014), enhances both the translocation of Homer1B, as well as 
sLTP (Tanaka et al. 2008; Bosch et al. 2014). Therefore, the translocation of these 
proteins is protein synthesis dependent. However, it should be noted that Homer1B 
and Shank are not the product of neuronal activity-dependent protein synthesis. In 
this study, these proteins were expressed by using a heterologous promoter (cyto-
megalovirus (CMV) promoter) and a polyadenylation signal (simian virus 40 
(SV40) polyadenylation signal), which are unlikely to be normally modulated by 
neuronal activity. Indeed, there was no change in the overall brightness of the den-
dritic branch. Therefore, the translocation of these scaffolding proteins is not depen-
dent on their synthesis, but rather on a yet-to-be-identified newly synthesized 
protein that serves as an interface between the bona fide synaptic tag and the scaf-
folding proteins.

What is the consequence of the translocation of PSD scaffolding proteins? It has 
been demonstrated that the synapse undergoes a synaptic consolidation process 
after the induction of LTP. Soon after induction (<1 h), the synapse can be easily 
depotentiated with low-frequency stimulation (Fujii et  al. 1991; Huang and Hsu 
2001). However, after this initial phase (>1 h), the potentiated synapse becomes 
more resistant to depotentiating stimulation. This phenomenon is a form of meta-
plasticity, where plasticity itself is plastic depending on the synapse history. The 
delayed transport of PSD scaffolding proteins that depend on protein synthesis can 
explain synaptic lability during E-LTP and synaptic consolidation at L-LTP. Actin 
polymerization mediates E-LTP, which can be readily reversed by any mechanism 
that depolymerizes F-actin. However, as the scaffolding proteins are transported to 
the synapse and added to the PSD, the synapse becomes more resistant. Indeed, 
many of the PSD scaffolding proteins such as PSD-95, SynGAP, GKAP, Homer1B, 
and Shank have much slower turnover rates (~30 min), indicating they are much 
more stable than actin and CaMKII, with turnover rates of ~1 and ~5 mins, respec-
tively (Star et al. 2002; Okamoto et al. 2004; Kuriu et al. 2006; Sharma et al. 2006). 
The delayed transport of PSD scaffolding proteins can also explain another phe-
nomenon of metaplasticity: LTP is saturated during E-LTP because the PSD cannot 
grow and accommodate more AMPARs. Only when new scaffolding proteins arrive 
at the PSD during L-LTP, can more AMPAR be incorporated at the PSD and the 
synapse can be further potentiated (Frey et al. 1995; Lynch et al. 2013).

3.6  Concluding Remarks

The sequential transport of various postsynaptic molecules to the synapse after LTP 
induction reasonably explains several synaptic events observed during this period, 
including synaptic tagging and consolidation. LTP induction triggers a large reorga-
nization of postsynaptic structure and molecular composition in a sequential 
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manner. Thus, AMPAR trafficking and insertion into the synapse is only the tip of 
the iceberg of more global events occurring beneath the synapse. The proteins that 
are transported to the synapse first, without requiring protein synthesis, serve as 
synaptic tags for proteins that arrive later. We specifically propose that the molecu-
lar identity of the synaptic tag is of a cytoskeletal nature, primarily involving F-actin 
and CaMKII. We propose that the synaptic tag is a remodeled F-actin cytoskeleton, 
where LTP induces the formation of new actin filaments crossed-linked to form a 
higher order macromolecule. On one side, cofilin binds to F-actin and stabilizes the 
whole F-actin macrostructure at the base of the spine. On the other side, close to the 
PSD, Ca2+ influx triggers CaMKII association with GluN2B and forms a cross- 
linked network with other proteins, such as Tiam1, via a liquid–liquid phase separa-
tion mechanism. This meshwork is linked to the new F-actin filaments through the 
β subunit of CaMKII. This new macrostructure is formed specifically at the potenti-
ated spine within a few minutes, will last for 1–2 h, and its main function will be to 
capture the appropriate newly synthesized proteins from the dendrite, such as those 
that will bring the scaffolding proteins and the AMPARs to the PSD.

Although we haven’t covered it extensively here, covalent modifications of pro-
teins such as phosphorylation, lipid modification, and ubiquitination also play an 
important role in this process and should be further elucidated and integrated into 
the picture described above.
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