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Structural plasticity of dendritic spines
Miquel Bosch1 and Yasunori Hayashi2
Dendritic spines are small mushroom-like protrusions arising

from neurons where most excitatory synapses reside. Their

peculiar shape suggests that spines can serve as an

autonomous postsynaptic compartment that isolates chemical

and electrical signaling. How neuronal activity modifies the

morphology of the spine and how these modifications affect

synaptic transmission and plasticity are intriguing issues.

Indeed, the induction of long-term potentiation (LTP) or

depression (LTD) is associated with the enlargement or

shrinkage of the spine, respectively. This structural plasticity is

mainly controlled by actin filaments, the principal cytoskeletal

component of the spine. Here we review the pioneering

microscopic studies examining the structural plasticity of

spines and propose how changes in actin treadmilling might

regulate spine morphology.
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Morphology of the dendritic spine
In the vertebrate central nervous system, excitatory

synapses are usually formed on small, mushroom-like

protrusions on dendrites called dendritic spines [1,2].

Typically, one single glutamatergic synapse is formed

at the head of a spine, although some spines may receive

multiple presynaptic termini or non-excitatory inputs

[1,3]. Spines are composed of highly specialized subdo-

mains exerting different functions in synaptic trans-

mission and plasticity. Beneath the synapse, one can

find an electron-dense disc-like structure, called the

postsynaptic density (PSD). The PSD is composed of

multiple proteins that bind with each other through

specific domain–domain interactions, forming a mesh-

like structure organized in consecutive layers [4–7].

These proteins include neurotransmitter receptors, scaf-

folding proteins that stabilize those receptors, signal
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transduction molecules, ion channels, and cytoskeletal

components [7]. In addition to the PSD, the spine mem-

brane may contain specialized microdomains for endocy-

tosis or exocytosis [8,9]. The cytoskeleton in spines is

mainly formed by actin filaments (F-actin), which serve

both as a structural framework and as the principal reg-

ulator of protein and vesicular trafficking [10–12]. Mature

spines may also contain intracellular membranous struc-

tures (e.g. spine apparatus or amorphous vesicular

clumps), protein synthesis machinery such as polyribo-

somes, and mitochondria [13–17]. The spine head is

connected to the dendritic shaft via a thin neck (width

of �0.2 mm) that is thought to work as a diffusion barrier

for molecules and ions. Moreover, the spine and the

presynaptic terminus are surrounded by perisynaptic glial

processes, thereby forming a tripartite synapse [18,19].

These morphological characteristics have led researchers

to consider that the dendritic spine may function as a

microcompartment that confines postsynaptic signaling

both chemically and electrically [1,2,20,21].

Spines exhibit a wide range of size and shapes, even

within a single neuron. During cortical development,

spines are rather thin and elongated and gradually gain

a typical mushroom-like structure with a prominent head

and a thin neck as the tissue matures [22–24]. There is a

positive correlation between the spine head volume, the

PSD area, the presynaptic active zone area, the number of

AMPA-type glutamate receptors, and the synaptic

strength [25–27,28�]. These correlations suggest that

spine structure is tightly coupled to synaptic function.

Furthermore, time-lapse studies have shown that spines

are extremely plastic and motile. In sensory cortex, this

motility is regulated by sensory experience and signifi-

cantly decreases with age [22,29,30]. However, we still do

not fully understand the intrinsic relationship between

structural and functional plasticities of the spine. There-

fore, it is of great interest to know how spine head and

neck morphologies are regulated by neuronal activity to

ultimately comprehend why spines have such unique

shape and how its modifications affect synaptic functions.

Electron microscopic studies on the activity-
dependent structural plasticity of dendritic
spines
The very first evidence supporting the structural modi-

fication of dendritic spines associated with synaptic

activity came from a series of electron microscopic

(EM) studies by Eva Fifková and co-workers in 1970s

to 1980s. They induced long-term potentiation (LTP) at

synapses between hippocampal perforant path and den-

tate granule cells in vivo, using the same preparation
, Curr Opin Neurobiol (2011), doi:10.1016/j.conb.2011.09.002

Current Opinion in Neurobiology 2011, 22:1–6

http://dx.doi.org/10.1016/j.conb.2011.09.002
mailto:yhayashi@brain.riken.jp
http://dx.doi.org/10.1016/j.conb.2011.09.002


2 Synaptic Structure and Function

CONEUR-967; NO. OF PAGES 6
wherein Bliss and Lømo [31] reported the first synaptic

plasticity in the mammalian central nervous system. Only

two years after the study by Bliss and Lømo, Fifková and

co-workers found that dendritic spines on stimulated

pathway were larger than those in unstimulated pathway

or in control animals [32��]. This enlargement was found

as early as 2 min after tetanic stimulation and lasted up to

23 h [33�]. At the same time, they found wider and shorter

spine necks after LTP induction [34�]. If we approximate

the spine neck to a cylinder, we calculate that these

changes reduce the spine electrical resistance by 74%

at 4 min and by 54% at 60 min. These changes may lead

to more efficient transmission of electrical current gener-

ated at the dendritic spine head.

Using a similar approach, Desmond and Levy observed an

increase in the proportion of concave-shaped spines with a

concomitant decrease in those with simple and ellipsoid

shape [35]. Along with it, total PSD surface area associated

with concave spines increased significantly [36]. Harris and

co-workers examined CA1 pyramidal cells in hippocampal

slices, a conventional preparation for studying LTP, with

electron microscopy and found that the percentage of

spines containing polyribosomes increased 2 h after a

tetanic stimulation [15]. Those spines contained signifi-

cantly wider PSD as well. Other features commonly found

after LTP induction is an increase in the number of spines

with perforated PSD [23,37,38], the number of bifurcated

spines ([39], but also see [40]) and the formation of spinules

from the spine head [41,42]. These studies strongly sup-

port the view that the structure and contents of a dendritic

spine can undergo long-term modifications during synaptic

plasticity.

Light microscopic studies on the activity-
dependent structural plasticity of dendritic
spines
In these EM studies, because of an obvious lack of capa-

bility of time-lapse imaging, it was not possible to demon-

strate whether existing spines became enlarged or whether

spines with larger size were generated de novo by LTP

induction. It was even not possible to know whether a

given synapse under observation was actually potentiated

or not. Those results relied on statistical differences be-

tween different populations of spines and, therefore, had a

certain limitation in interpretation as to whether they were

truly observing phenomena directly associated with LTP

or processes occurring in parallel and not directly involved

in the induction or maintenance of LTP itself.

Hosokawa et al. were the first to attempt time-lapse

imaging of the same set of dendritic spines in hippo-

campal slices before and after LTP induction [43]. They

used a confocal microscope to observe DiI-labeled

neurons and found an increase in length in a subpopu-

lation of small spines 3 h after the induction of chemical

LTP. Maletic-Savatic et al. employed two-photon
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microscopy in GFP-transfected neurons and induced

LTP by local stimulation with a glass electrode [44�].
They observed the generation of new filopodia-like pro-

trusions and, at the same time, the loss of existing spines.

Engert and Bonhoeffer [45�] also carried out a similar

experiment by locally perfusing a dendritic segment with

Ca2+-containing extracellular fluid while suppressing

synaptic transmission in the rest of the dendrite by

Cd2+-containing solution. Electrical stimulation resulted

in the generation of new spines only in the segment

where Ca2+ was available. However, the generation of

new spines did not synchronously occur with the increase

in the synaptic transmission. While the increase in excit-

atory postsynaptic current (EPSC) amplitude was

observed within a few minutes after LTP induction,

the generation of new spines occurred much later.

Therefore, it still remained an unanswered question

whether the enlarged spines indeed underwent LTP or

not. To elucidate this issue, Matsuzaki et al. [28�,46��]
employed a two-photon-induced glutamate uncaging

technique, which allows the controlled release of gluta-

mate in a very small volume compared with other

approaches (such as local glutamate application through

pipette or conventional UV-mediated uncaging method).

Combined with electrophysiological recordings, they

showed that repeated uncaging of glutamate in Mg2+-free

solution induced both an expansion of the dendritic spine

as well as an increase in the synaptic electrical response.

Okamoto et al. [47�] found a similar expansion of the

dendritic spine that synchronized with the local electrical

stimulation of presynaptic fibers (Figure 1a). The same

result was observed when glutamate uncaging was paired

with channelrhodopsin-induced depolarization of the

postsynaptic neuron [48]. In addition to these studies

demonstrating structural changes of existing spines, a

recent study demonstrated a de novo formation of new

spines after local glutamate uncaging in the dendrite [49].

Whether the diameter and length of the spine neck

change or not has not been confirmed using live imaging

techniques available so far. The recent development of

superresolution imaging methods will be key to answer-

ing this question [50�,51�,52�,53�,54�].

Conversely, the induction of long-term depression

(LTD) by either electrical or chemical stimulation

induces shrinkage [47�,55�,56,57] or loss of dendritic

spines [47�,58�]. Spine shrinkage is persistent but revers-

ible, as it can be reverted by a potentiation stimulus [55�].
These studies on LTD and other recent studies on LTP

[59,60] show that structural plasticity can be dissociated

from functional plasticity. Although they share the same

initial triggering mechanisms, they seem to be regulated

by parallel but distinct downstream intracellular signaling

pathways. Thus, the role of morphological changes of

spines in synaptic transmission and plasticity still remains

an open question.
, Curr Opin Neurobiol (2011), doi:10.1016/j.conb.2011.09.002
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Figure 1
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Actin filaments in the dendritic spine. (a) Expansion of the dendritic spine and rapid polymerization of actin by local tetanic stimulation. Actin

polymerization was visualized by FRET-based imaging method, which detects the proximity of actin molecules. Obtained from [47�]. (b) An electron

micrographic image of a dendritic spine showing S1-fragment labeled F-actin. Contrast was adjusted from the original, and coloring (red, spine head;

yellow, dendritic shaft) was added by the authors of this review. Arrowheads point to the spine neck. Obtained from [12].
F-actin regulation as a mechanism underlying
structural plasticity
What molecular mechanisms are responsible for the struc-

tural plasticity of dendritic spines? By decorating F-actin

with myosin subfragment 1 (S-1 fragment), Fifková et al.
demonstrated that actin filaments are associated with the

plasma membrane and the PSD at their barbed ends and

form a lattice structure within the spine head matrix [12]

(Figure 1b). By contrast, the actin filaments are organized

in long strands in the spine neck and dendritic shaft. This

finding was also confirmed by a recent EM study [61]. The

authors predicted that, given the dynamic properties of

actin, actin filaments play a crucial role in synaptic

plasticity, by changing the shape of the presynaptic and

postsynaptic side and, in neuronal circuits, by mediating

the retraction and sprouting of synapses [12].

Consistent with the important role of F-actin regulation in

synaptic plasticity, the pharmacological manipulation of

actin polymerization and depolymerization effectively

blocks LTP [62,63] and, at the same time, suppresses

the structural enlargement of dendritic spines [46��].
The rapid polymerization of actin in spines during LTP

was demonstrated by a FRET-based method that detected

actin-actin interactions in real time [47�] (Figure 1a). Using
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the same system, it was also demonstrated that LTD is

accompanied by depolymerization of F-actin [47�].

Actin undergoes a rapid turnover in the spine, replacing

almost the entire molecular population every 2–3 min

[64,65�]. Recent studies have revealed the fine details

of actin dynamics within dendritic spine subdomains by

using photoactivatable and photoswitchable fluorescent

protein-tagged actin [65�,66��]. They found that actin

undergoes a constant inward flow from the periphery to

the center of the spine on the order of minutes. Because

the speed of diffusion of monomeric actin (globular or G-

actin) is expected to be much faster (on the order of

seconds), the observed fluorescence movement reflects

the treadmilling of F-actin, i.e., the movement of the

monomer within the filament while it polymerizes at one

side (the barbed end, mainly located at the periphery) and

depolymerizes at the other one (the pointed end, located

at the spine core; Figure 2a). This is consistent with the

polarity of actin filaments revealed by electron micro-

scopic observation [12].

Importantly, stimulation of synaptic glutamate receptor

slows down F-actin turnover/treadmilling [64,65�].
Furthermore, Honkura et al. found that LTP induction
, Curr Opin Neurobiol (2011), doi:10.1016/j.conb.2011.09.002
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Figure 2
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Proposed mechanisms for spine expansion. (a) In a naive spine, there is a constant treadmilling of actin from the periphery to the center of the dendritic

spine, maintained by an equilibrated rate of F-actin polymerization/depolymerization. (b) LTP induction stabilizes the actin filaments and slows down

the depolymerization at the pointed end of F-actin located at the core of dendritic spine. (c) Polymerization continues in the periphery of dendritic

spine, thereby generating the driving force that expands the spine head.
leads to a formation of a new stable population of actin at

the core of the spine head [65�]. This could be explained

by a reduced depolymerization rate from the pointed end

of the actin filament at the core of the spine. Polymer-

ization would continue at the barbed end in the spine

periphery, thereby generating the force that enlarges the

dendritic spine. This effect would also be responsible for

the overall shift in G-actin/F-actin equilibrium towards

polymerization. We propose that this is the mechanism of

expansion of the dendritic spine during LTP (Figure 2b

and c).

It is therefore crucial to elucidate the signaling pathways

that regulate F-actin treadmilling during LTP to under-

stand synaptic plasticity [67,68]. The blockade of

NMDA-type glutamate receptor (NMDAR) completely

inhibits structural LTP [46��,47�]. Inhibition of Ca2+/

calmodulin-dependent protein kinases (CaMK) partially

blocks the spine enlargement [46��,69]. One of the major

members of the CaMK family present in the PSD,

CaMKIIb, bundles F-actin filaments independently of

its kinase activity. Interestingly,  the activation of CaM-

KIIb by Ca2+/CaM inhibits this F-actin bundling

capacity [70]. Such ability may determine the time

window wherein F-actin can be reorganized [71�]. A

recent imaging study detected a persistent activation

of the Rho family of small G-proteins in the dendritic

spine after LTP induction [72�]. The pharmacological

blockade of downstream signaling pathway of these

proteins, including p21-activated kinase (PAK) and

Rho-associated, coiled-coil containing protein kinase

(ROCK), effectively blocked spine enlargement [72�].
These pathways regulate the activity of several actin-

binding proteins [68], such as profilin and cofilin, which

might ultimately be responsible for altering the rate of
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actin polymerization/depolymerization and treadmilling

and, thus, for controlling spine morphology.

Concluding remarks
The development of new imaging and optical manipula-

tion techniques allows us to visualize the behavior of

single dendritic spines during synaptic plasticity in great

temporal and spatial detail. This technology revealed a

novel aspect of hippocampal LTP, namely the structural

modification of the dendritic spine. There is a tight

correlation between the physiology of synaptic trans-

mission and the shape of the dendritic spine, although

both phenomena could play distinct and complementary

functions in neuronal plasticity. The current develop-

ment of more sophisticated imaging modalities combined

with molecular and electrophysiological methods will

further elucidate the fundamental role that the

morphology of the dendritic spine may play in the pro-

cesses of learning and memory.
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